Platinum-Rhenium/Alumina Catalysts

I. Investigation of Reduction by Hydrogen

C. BOLIVAR, H. CHARCOSSET, R. FRETY, M. PRIMET AND L. TOURNAYAN

Institut de Recherches sur la Catalyse, C.N.R.S., 39 Bd. du 11 Novembre 1918, 69626-Villeurbanne, France

AND

C. BETIZEAU, G. LECLERCQ AND R. MAUREL

Laboratoire de Chimie IV, Catalyse Organique, Faculté des Sciences, Université dé Poitiers, 40 Avenue Recteur Pineau, 86022-Poitiers, France

Received December 5, 1974; revised March 24, 1975

Pure Re_2O_7 when heated in a hydrogen atmosphere, sublimes before reduction. However, when Re_2O_7 is mixed with Pt or Pd or Re powder, instead of volatilization complete reduction to metallic Re occurs below $200^{\circ}C$. A strong activation by Pt of the reduction of Re_2O_7 also takes place on Al_2O_3 samples coimpregnated with H_2PtCl_6 and Re_2O_7 . With such catalysts, the reduction of Re_2O_7 to metallic Re under 1 atm pressure of hydrogen seems to be complete at a rather low temperature.

INTRODUCTION

The bimetallic catalysts which contain at least one of the Group VIII elements have been extensively studied, mainly in the powder state. The catalytic activity may change with the composition in several ways, according to the reaction being studied and according to the metal couple (1). A regular variation of the activity as well as the presence of one or two maxima in the plot of activity against the percentage composition of one element may be observed.

When both metals are supported on a carrier, several additional effects have to be considered. The accurate characterization of the metallic phase is more difficult, as a consequence of the low metal concentration and of the small particle size. Furthermore, the phase diagrams known for the bulk metals may be significantly modified under these conditions (2). A relevant feature of this kind of catalyst is that there is a marked deviation from the

additive behavior of the singly supported metals even when no mutual solubility exists in the bulk state (3).

The present study deals with Al_2O_3 -supported Pt and Re catalysts, which have various practical applications (4), and about which very few theoretical investigations have yet been published (5).

The activation of the catalysts by hydrogen and especially the catalytic effect of Pt on the reduction of Re_2O_7 are described. To facilitate the interpretation of the results, studies of the reduction of pure Re_2O_7 and of $H_2PtCl_6 + Re_2O_7$ mixtures have also been made.

EXPERIMENTAL METHODS

I. Samples

1. Re₂O₇ and Additives

The following materials were used: Alfa Inorganics Re₂O₇ (99.99%) maintained in

a sealed tube under 1 atm of argon; Pt black; Ag prepared by thermal decomposition of Ag₂CO₃ in air at 300°C, and subsequently heated in H₂ at 300°C; Re prepared by thermal decomposition of ReCl₃ in nitrogen at 300°C, and subsequently heated in H₂ at 300°C; Pd moss.

2. Mixtures of H_2PtCl_6 and Re_2O_7

Aqueous solutions of H₂PtCl₆ and Re₂O₇ were evaporated to dryness by infrared heating below 50°C. Samples prepared by freeze-drying instead of infrared heating gave the same results.

3. Re₂O₇ and (or) H₂PtCl₆ Supported on an Al₂O₃ Carrier

a. Supports. (i) α -Al₂O₃ Péchiney SCS9 with a small amount of δ -Al₂O₃ (S=24 m²/g; granulometry: 0.31 to 0.4 mm, or 0.08 to 0.1 mm). (ii) Poorly crystallized γ -Al₂O₃ Degussa Oxide C with a small amount of δ -Al₂O₃ (S=180 m²/g).

b. Impregnation. The Al_2O_3 carrier was impregnated with an aqueous solution of $H_2PtCl_6 + Re_2O_7$. The samples were then dried in air at approximately 110°C.

II. Methods

1. Thermogravimetry

A vacuum Sartorius microbalance with a sensitivity of $\approx 5~\mu g$ was employed. For studying the reduction of unsupported Re₂O₇, 10–15 mg of sample was used, the hydrogen pressure was 100 Torr, the heating rate was 2°C/min and water vapor was trapped at 78°K. When SiO₂, Pt, Pd or Re was added to Re₂O₇, the mixture was simply made in the pan of the microbalance.

For studying the reduction of $(H_2PtCl_6 + Re_2O_7)$ supported on Al_2O_3 a sample of 70-80 mg was used. In the case of γ - Al_2O_3 -supported compounds, the blank pan was filled with the same amount of γ - Al_2O_3 as contained in the $(H_2PtCl_6 + Re_2O_7)/\gamma$ - Al_2O_3 sample. The blank γ -

alumina and the $(H_2PtCl_6 + Re_2O_7)/\gamma$ - Al_2O_3 sample were simultaneously submitted to the same thermal treatment (differential thermogravimetry).

Since the weight loss of α -Al₂O₃ was small compared to γ -Al₂O₃, differential experiments were not necessary for studying the reduction of α -Al₂O₃ supported compounds, and the blank pan was in this case filled with quartz.

2. Differential Thermal Analysis (DTA)

The cell used was the same as that described by Fouque *et al.* (6). The sample weight was ≈ 200 mg, the hydrogen flow rate was 3 liter/hr and the heating rate was 10° C/min.

3. Volumetry

The consumption of H_2 during the reduction of $(H_2PtCl_6 + Re_2O_7)/Al_2O_3$ was followed using a Pirani gauge. The sample (100 mg) was evacuated at room temperature and then exposed to hydrogen (p = 0.8 Torr). During heating (4°C/min), a pressure drop due to the reduction was observed, since H_2O and HCl were trapped at 78°K. The hydrogen pressure was kept at its initial value by introduction of small calibrated volumes of H_2 into the reduction cell. In this way it was possible to obtain the curve of hydrogen consumption as a function of temperature.

4. Chemical Analysis

Pt was analyzed colorimetrically (reduction of $PtCl_6^2$ by $SnCl_2$) and Re was analyzed colorimetrically (in presence of α -furildioxime) or by atomic emission spectroscopy.

RESULTS

1. Re₂O₇, Pure or Mixed with Ag, Pt, Pd, Re

Figure 1 shows the weight loss with temperature under H₂ atmosphere for pure Re₂O₇ and mixtures of Re₂O₇ with 20

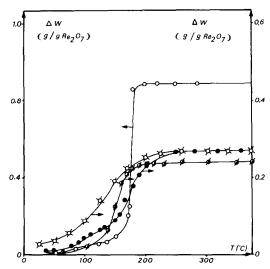


FIG. 1. Weight change of Re_2O_7 at increasing temperature in hydrogen (\bigcirc) pure Re_2O_7 and $Re_2O_7 + SiO_2$; ($\not\propto$) $Re_2O_7 + 20\%$ Pt; (\oslash) $Re_2O_7 + 20\%$ Pd; (\bigcirc) $Re_2O_7 + 20\%$ Re.

wt% SiO₂ (quartz), Pt, Pd, or Re. The weight loss of each additive was negligible, compared to the weight loss of Re₂O₇.

The weight loss observed under about 100°C was unreproducible and depended strongly on the time of contact of the sample with the ambient atmosphere. When that time was occasionally very short the weight loss up to about 100°C was negligible compared to the total weight loss of the sample during the thermogravimetry experiment.

$$Re_2O_7$$
, Pure and Mixed with SiO_2 or Ag

The volatilization of Re₂O₇ gave rise to the marked weight loss observed near 180°C: pure Re₂O₇ deposited on the walls of the reactor tube.

In the presence of Ag, the volatilization of Re_2O_7 was observed at about 200°C, which is a slightly greater temperature than that observed for the $Re_2O_7 + SiO_2$ mixture.

$Re_2O_7 + Pt$, Pd or Re

No significant volatilization of Re₂O₇ was observed. The weight loss noted above 100°C was due to the reduction of

 Re_2O_7 . The loss of weight between 100 and 400°C was practically equal to the value calculated for the reduction of Re_2O_7 to metallic Re.

When the additive was Pt (10 or 20%) or Pd (20%), the final products at 400°C were mixtures of Re and the additive, as shown by X-ray analysis. In the case of Pd (10%) and Ag (20%) somewhat more complicated diffraction patterns were obtained, which could not be completely identified.

Furthermore, X-ray analysis gave evidence for the presence of metallic Re in a Re_2O_7 + Pt mixture after treatment for a few hours in hydrogen at room temperature.

2. Mixtures of H₂PtCl₆ and Re₂O₇

a. The reduction of H_2PtCl_6 to Pt by H_2 took place slowly at room temperature. It emanated from a few Pt nuclei and was retarded by Re_2O_7 . From X-ray analysis, it was concluded that the reduction of Re_2O_7 did not occur under these conditions.

b. During thermal treatment (2° C/min) under hydrogen (p = 500 Torr) the mixtures of H_2 PtCl₆ and Re_2O_7 were completely reduced to the metallic state at a temperature as low as 200° C, provided that the percentage Pt was greater than 20. X-Ray analysis showed that the final products obtained either at 200 or 500°C were essentially mixtures of Pt and Re.

3. H₂PtCl₆ and (or) Re₂O₇ Deposited on Al₂O₃

Most of the Al_2O_3 -supported solids studied had a nearly constant content in (Pt + Re), that is 2 wt%.

In the following we designate $100 \times$ wt% Re/(wt% Pt + wt% Re) by $\chi_{\rm Re}$.

a. Differential Thermal Analysis

 $(H_2PtCl_6 + Re_2O_7)/\gamma$ - Al_2O_3 . Only one exothermic peak due to the reduction was observed. A plot of the temperature of its maximum against $\chi_{\rm Re}$ is shown in Fig. 2. The reduction temperature of H_2PtCl_6/γ -

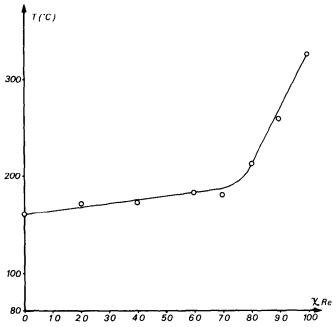


Fig. 2. Temperature of the maximum of the DTA peak in hydrogen, as a function of χ_{Re} in $(H_2PtCl_6 + Re_2O_7)/\gamma - Al_2O_3$ coimpregnated catalysts.

Al₂O₃ (near 160°C) is in agreement with the work of Mills *et al.* (7) concerning the reduction of a Pt $(0.5\%)/\text{Al}_2\text{O}_3$ catalyst. The temperature of reduction $(160-180^\circ\text{C})$ of $(\text{H}_2\text{PtCl}_6 + \text{Re}_2\text{O}_7)/\gamma\text{-Al}_2\text{O}_3$ does not change significantly for $0 < \chi_{\text{Re}} < 70$. It increases at higher Re content and reaches about 330°C for Re₂O₇/ γ -Al₂O₃. For bimetallic catalysts with $\chi_{\text{Re}} > 80$ the DTA peak of reduction was broadened because a part of the Re₂O₇ behaved more or less as in Re₂O₇/ γ -Al₂O₃.

 $(H_2PtCl_6 + Re_2O_7)/\alpha$ - Al_2O_3 . A similar variation of the temperature of reduction with the composition was observed. Nevertheless the reduction took place at a lower temperature than with the γ - Al_2O_3 carrier (e.g., peak at 290°C for Re_2O_7/α - Al_2O_3 instead of 330°C for Re_2O_7/γ - Al_2O_3).

b. Thermogravimetry (TG)

Differential thermogravimetry (DTG) of $(H_2PtCl_6 + Re_2O_7/\gamma - Al_2O_3)$. Heating

rate: 4° C/min; $p_{\text{H}_2} = 500$ Torr. There was a weight loss of the catalyst when compensated for the carrier alone. The maximum rate of that weight loss occurred at 320, 200 and 180°C for $\chi_{\text{Re}} = 100$, 50 and 0, respectively, in agreement with the DTA experiments.

Thermogravimetry of $(H_2PtCl_6 +$ Re_2O_7)/ α - Al_2O_3 . Heating rate: 8°C/min; $p_{\rm H_2} = 100$ Torr. A few typical curves are shown in Fig. 3. If one considers, for example, the case of $\chi_{Re} = 50$, the weight change below about 220°C is mainly due to the reduction of supported (H₂PtCl₆ + Re_2O_7) while the weight loss above this temperature is mainly due to the support. For $\chi_{Re} = 87.5$, a further change in the slope of the $\Delta W = f(T)$ curve appears near 320°C, that is at the temperature of reduction of α -Al₂O₃-supported Re₂O₇. In the case of $\chi_{Re} = 87.5$ a small part of the Re_2O_7 behaves as in Re_2O_7/α - Al_2O_3 .

The TG curves corroborate the DTA experiments, showing that the reduction

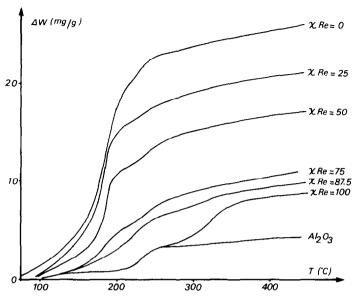


Fig. 3. Weight loss in hydrogen, ΔW , with increasing temperature, of α -Al₂O₃ and of (H₂PtCl₆ + Re₂O₇)/ α -Al₂O₃ coimpregnated catalysts.

occurs in one step at approximately the same temperature in a very large range of the χ_{Re} values.

As far as the difference between the weight losses of $(H_2PtCl_6 + Re_2O_7)/\alpha$ - Al_2O_3 and of α - Al_2O_3 at 400°C is concerned, its value changes approximately linearly with χ_{Re} over the whole range of composition.

c. Volumetry

 $(H_2PtCl_6 + Re_2O_7)/\gamma - Al_2O_3$. The volume of hydrogen consumed versus the temperature, under a low hydrogen pressure of 0.8 Torr, is shown in Fig. 4 for various values of χ_{Re} . With Re_2O_7/γ - Al_2O_3 ($\chi_{Re} = 100$) several hours heating at 600°C were necessary to obtain the equilibrium pressure. Then the reduction was considerably slower than under atmospheric pressure of H₂. Figure 4 shows that addition of Pt reduces considerably the temperature of reduction of Re_2O_7 . When $\chi_{Re} < 70$, the temperature of reduction is insensitive to the composition and only slightly dependent on the hydrogen pressure (T =250–270°C when p = 0.8 Torr, T = 180°C when p=1 atm from DTA and DTG). Moreover, a release of hydrogen from the catalyst was observed above 350°C when $\chi_{\rm Re} < 50$. This effect is ascribed to the desorption of hydrogen chemisorbed on the metallic phase, in agreement with previous work on the thermal desorption of hydrogen from Pt-Al₂O₃ catalysts (8).

 $(H_2PtCl_6 + Re_2O_7)/\alpha - Al_2O_3$. The shape of the curves $V(H_2) = f(T)$ was the same as for the γ -Al₂O₃-supported catalysts. Nevertheless, for a given value of $\chi_{\rm Re}$, the reduction took place at a somewhat lower temperature when the support was α -Al₂O₃, in agreement with the DTA experiments.

Some values of the volume of hydrogen consumed at the equilibrium H_2 pressure of 0.8 Torr at 600°C are reported in Table 1 (second column) both for γ -Al₂O₃-and for α -Al₂O₃-supported catalysts.

Since in Al_2O_3 coimpregnated with H_2PtCl_6 and Re_2O_7 , these compounds could combine together, it appeared useful to study the reduction of H_2PtCl_6 (or Re_2O_7)/ Al_2O_3 samples prereduced before a further impregnation with Re_2O_7 , and

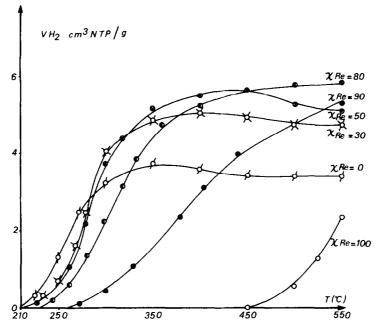


Fig. 4. $V(H_2)$ consumed versus temperature for $(H_2PtCl_6 + Re_2O_7)/\gamma$ - Al_2O_3 coimpregnated catalysts.

the reduction of mechanical mixtures of H_2PtCl_6/Al_2O_3 (or Pt/Al_2O_3) and Re_2O_7/Al_2O_3 .

 H_2PtCl_6 (or Re_2O_7)/ γ - Al_2O_3 prereduced before a further impregnation with Re_2O_7 . H_2PtCl_6 / γ - Al_2O_3 (0.4 wt% Pt) was reduced by H_2 at 500°C and subsequently impregnated with Re_2O_7 in order to pro-

TABLE 1 $V({\rm H_2})$ Consumed at the Equilibrium ${\rm H_2}$ Pressure of 0.8 Torr at 600°C

			V(H ₂) (cm ³ NTP/g catalyst)	
Sample support	$\chi_{ m Re}$	Expt	Calc	
γ-Al ₂ O ₃	0	3.4	4.5	
α -Al ₂ O ₃	0	4.3	4.5	
γ -Al ₂ O ₃	100	8.0	7.6	
α -Al ₂ O ₃	100	6.4	6.3	
α -Al ₂ O ₃	87.5	6.0	6.5^{a}	
γ -Al ₂ O ₃	80	5.8	6.0^{a}	
y-Al ₂ O ₃	50	5.1	5.7^{a}	
γ -Al ₂ O ₃	30	4.8	4.8^{a}	

^a Assuming that the reduction of H_2PtCl_6 requires per gram of Pt the same volume of H_2 as for H_2PtCl_6/Al_2O_3 .

duce 2 wt% (Pt + Re) on the support. The reduction curve (Fig. 5, curve I), is similar to that obtained with the coimpregnated solid of the same composition (Fig. 5, curve II) but the prereduction of H_2PtCl_6 to Pt gave rise to a decrease of the initiation reduction temperature of Re_2O_7 .

A similar experiment was performed with Re_2O_7/γ - Al_2O_3 (0.4 wt% Re). Both γ - Al_2O_3 -supported Re_2O_7 catalysts (2 wt% Re) prepared in either one or two steps had comparable temperatures of reduction (see Fig. 5, curves III and IV). The total volume of hydrogen consumed at 600°C was about the same, because the prereduced Re was reoxidized to Re_2O_7 in contact with ambient air or (and) with the Re_2O_7 aqueous solution during the second impregnation.

Mixtures of $H_2PtCl_6/\gamma-Al_2O_3$ (or $Pt/\gamma-Al_2O_3$) and $Re_2O_7/\gamma-Al_2O_3$. When a layer ~ 8 mm thick of $H_2PtCl_6/\gamma-Al_2O_3$ (m=50 mg) and a layer also ~ 8 mm thick of $Re_2O_7/\gamma-Al_2O_3$ (m=50 mg) were superposed in the bottom of the sample pan, the $V(H_2) = f(T)$ curve (Fig. 6, curve I)

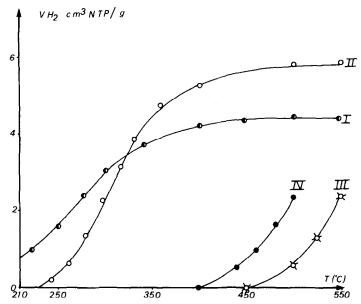


FIG. 5. $V(H_2)$ consumed versus temperature of reduction for: (I) (Pt + Re₂O₇)/ γ -Al₂O₃ ($\chi_{Re} = 80$); (II) (H₂PtCl₆ + Re₂O₇)/ γ -Al₂O₃ ($\chi_{Re} = 90$); (III) Re₂O₇/ γ -Al₂O₃ (one impregnation step); (IV) Re₂O₇/ γ -Al₂O₃ (two impregnation steps).

showed clear evidence that the reductions of both catalysts were independent of each other.

On the other hand, when H_2PtCl_6/γ - Al_2O_3 and $(Re_2O_7)/\gamma$ - Al_2O_3 were mixed (50–50%) in an agate mortar, the $V(H_2) = f(T)$ curve (Fig. 6, curve II) was similar to

the curve obtained with the coimpregnated catalyst of the same composition (wt% $(Pt+Re)=2,\,\chi_{Re}=50$).

In a mixture of Re_2O_7/γ - Al_2O_3 with Pt/γ - Al_2O_3 , that is with prereduced H_2PtCl_6/γ - Al_2O_3 (Fig. 6, curve III) the consumption of hydrogen began at room

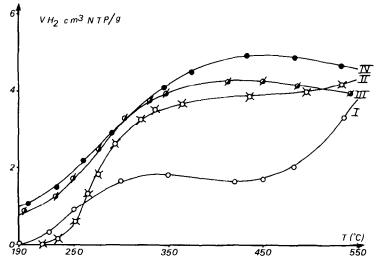


FIG. 6. $V(H_2)$ consumed versus the temperature for: (I) superimposed layers of $H_2PtCl_e/\gamma-Al_2O_3$ and $Re_2O_7/\gamma-Al_2O_3$; (II) a mixture (50–50%) of $H_2PtCl_e/\gamma-Al_2O_3$ and $Re_2O_7/\gamma-Al_2O_3$; (III) a mixture (50–50%) of $Pt/\gamma-Al_2O_3$ with $Re_2O_7/\gamma-Al_2O_3$; (IV) a mixture (50–50%) of $Pt/\gamma-Al_2O_3$ ($\chi_{Re}=30$) with $Re_2O_7/\gamma-Al_2O_3$.

temperature partly because of the reduction of the oxygen chemisorbed by metallic Pt. Curve IV obtained with a mixture of Re_2O_7/γ - Al_2O_3 with $(Pt + Rc)/\gamma$ - Al_2O_3 ($\chi_{Re} = 30$) is very similar to curve III. Clearly, prereduced H_2PtCl_6/γ - Al_2O_3 and $(H_2PtCl_6 + Re_2O_7)/\gamma$ - Al_2O_3 ($\chi_{re} = 30$) had approximately the same effect on the reduction of Re_2O_7/γ - Al_2O_3 .

d. Chemical Analysis

During the reduction carried out under atmospheric pressure of hydrogen a loss of Re was only observed when the support was α -Al₂O₃ and χ_{Re} was more than about 50 (e.g., Re₂O₇/ α -Al₂O₃: % Re after impregnation = 1.9; % Re after reduction = 1.75).

Some experiments were carried out with the purpose of showing a transport of Re oxide inside the catalyst bed during the reduction. Mixtures of 40% $\rm H_2PtCl_6/\alpha$ - $\rm Al_2O_3$ ($\bar{d}=0.35$ mm) and 60% $\rm Re_2O_7/\alpha$ - $\rm Al_2O_3$ ($\bar{d}=0.1$ mm) (mixture I) and of 40% $\rm H_2PtCl_6/\alpha$ - $\rm Al_2O_3$ ($\bar{d}=0.1$ mm) and 60% $\rm Re_2O_7/\alpha$ - $\rm Al_2O_3$ ($\bar{d}=0.35$ mm) (mixture II) were made by shaking together and afterwards were reduced in hydrogen (p=1 atm) up to 500°C.

The Pt/α - Al_2O_3 and Re/α - Al_2O_3 of mixtures I and II were then separated by screening and submitted for chemical anal-

TABLE 2 Pt and Re (wt%) in H_2PtCl_6/α - Al_2O_3 and Re_2O_7/α - $Al_2O_3^a$

	Supp	ort			
Mixture	Composition	Granular size	% Pt	% Re	
I	Pt/α - Al_2O_3 Re/α - Al_2O_3	0.35 (mm) 0.1	1.7 	0.2 1.69	
II	$ ext{Pt}/lpha ext{-} ext{Al}_2 ext{O}_3 \ ext{Re}/lpha ext{-} ext{Al}_2 ext{O}_3$	0.1 0.35	1.8 b	0.31 1.37	

[&]quot; Mixed by shaking, then reduced by H₂ at 500°C, and finally separated by screening.

ysis. The results (Table 2) show that the Pt/α - Al_2O_3 catalyst incorporated some Re during the reduction while no transport of Pt to Re/α - Al_2O_3 catalyst occurred at the same time. It is worth while to note that the amount of Re incorporated in Pt/α - Al_2O_3 is larger when the granule size of the Pt-supporting Al_2O_3 is smaller.

DISCUSSION

 Reduction of Re₂O₇, Pure and Mixed with Ag, Pt, Pd, or Re

The catalytic effect of Pt, Ru or Re on the reduction of Re₂O₇ by hydrogen has already been reported by Smith-Broadbent et al. (9). Other similar effects are the subject of several recent reviews (10). Nevertheless, the magnitude of the effect of Pt on the Re₂O₇ reduction was unexpected, in particular, the formation of metallic Re from Re₂O₇ at 25°C. Pure Re₂O₇ is reduced by H2 at 300°C to ReO2 and above 400°C to the metal (11), which is a much higher temperature than reported for CuO (nearly 130°C) and NiO (nearly 200°C). CuO, if mixed with Pt, is only slightly reduced by H₂ at room temperature (12), and under the same conditions we did not detect any reduction of NiO.

To account for the very pronounced effect of Pt on the reduction of Re_2O_7 , it is appropriate to consider the following:

- 1. Bond et al. (13) have shown using DTA that the temperature of reduction of oxides by H_2 is decreased by Pd to a greater extent when the cation is initially in a high oxidation state (CrO₃, MoO₃, UO₃, V₂O₅).
- 2. Re₂O₇, which is strongly deliquescent, is partly transformed into viscous hydrated oxide during contact with air and may thus cover more easily the Pt particles.
- 3. Because of its low melting point and its high vapor pressure (11), Re₂O₇ is able to migrate by surface diffusion and via the gaseous phase to the Pt particles.

^b Too low for the analysis to be performed.

4. The activation of hydrogen by Pt is certainly an important step in the process, since Ag does not have the same effect. Re itself can activate hydrogen; the presence of Pt may only be necessary to form the initial Re metallic nuclei. Then, the Re nuclei and Pt can together catalyze the reduction of Re₂O₇. In fact, Smith-Broadbent et al. (9) have shown that the addition of Re to Re₂O₇ allows the reduction of the oxide to the metal to take place at a lower temperature and under a much lower hydrogen pressure. In the experimental conditions as reported in Fig. 1, Re seems to be effective in reduction of Re₂O₇ at a higher temperature than Pt. This can be related to the slow reduction of oxygen that is chemisorbed on Re (14) which is a necessary step before Re can activate H₂.

The ability of the Ag, Re and Pt powders used to activate hydrogen has been tested by the classical WO₃-H₂ reaction, at room temperature. In 5% metal + WO_3 mixtures, the blue color of H_xWO_3 was obtained after 1 hr with Pt and after 15 hr with Re, while no color change was observed for the Ag + WO₃ mixture from the originally yellow sample. Metallic Ni (produced by decomposition of nickel oxalate) was also unable to initiate the color change of WO₃ under the same conditions, in agreement with the work of Ershov et al. (15). Therefore it is believed that the undetectable reduction of NiO in the presence of Pt at 25°C is partly due to the inability of Ni itself to activate hydrogen in these conditions.

II. Reduction of Re₂O₇ or (and) H₂PtCl₆ Deposited on Al₂O₃

a. Influence of the Hydrogen Pressure on the Temperature of Reduction

The influence of the H_2 pressure is more pronounced in the absence of Pt, as outlined in Table 3. Smith-Broadbent *et al.*

TABLE 3 Influence of the Hydrogen Pressure on the Temperature of Reduction of $(H_2PtCl_6 + Re_2O_7)/\gamma - Al_2O_3$

ΔT (°C)	Approx <i>T</i> of reduction (°C)	p _{H2} (Torr)	$\chi_{ m Re}$
90	250	0.8	0
	160	760	
90	270	0.8	50
	180	760	
220	550	0.8	100
	330	760	

(9) suggest that the nucleation is the rate determining step in the reduction of Re₂O₇ to metallic Re. Faster nucleation may be obtained using a larger hydrogen pressure or an additive such as Pt (or Re). Hence it is not surprising that the presence of Pt decreases the effect of the hydrogen pressure.

b. Stoichiometry of the Reduction of H₂PtCl₆ and Re₂O₇

Table 1 (last column) allows us to compare the volumes of H₂ consumed at the equilibrium pressure of 0.8 Torr at 600°C with the values calculated for the reduction of Pt⁴⁺ to Pt⁰ and of Re⁷⁺ to Re⁰ according to the reactions:

$$H_2PtCl_6 + 2 H_2 \longrightarrow Pt + 6 HCl,$$
 (1)

$$Re_2O_7 + 7 H_2 \longrightarrow 2 Re + 7 H_2O$$
 (2)

In these conditions of high temperature and low pressure of H_2 , the amount of H_2 chemisorbed by the metal may be neglected (8).

 H_2PtCl_6/Al_2O_3 . The experimental value of $V(H_2)$ is approximately equal to the theoretical value when the support is α -Al₂O₃ and significantly lower when the carrier is γ -Al₂O₃·H₂PtCl₆ is presumably completely reduced to the metal on both supports. H_2PtCl_6 was probably already partly reduced before H_2PtCl_6/γ -Al₂O₃ was exposed to H_2 during the reduction experi-

ment. This may be due to a long storage time of $H_2PtCl_6/\gamma-Al_2O_3$ in the ambient atmosphere of the laboratory, where some reducing vapors may occasionally be present. In fact H_2PtCl_6 is very easily reduced to Pt and it has been observed that a mere bubbling of hydrogen in an aqueous solution of H_2PtCl_6 produced metallic Pt particles.

 (Re_2O_7/Al_2O_3) . The theoretical and experimental values of $V(H_2)$ are similar if we take account of the loss of Re due to the volatilization of rhenium oxide during the reduction (wt% Re after reduction in the volumetric apparatus was 1.8 for Re_2O_7/γ - Al_2O_3 and 1.5 for Re_2O_7/α - Al_2O_3). Hence the reduction of Re_2O_7 to metal is complete at the equilibrium hydrogen pressure of 0.8 Torr at 600°C and this conclusion certainly holds also for a much lower temperature of reduction if the hydrogen pressure is higher, e.g., 1 atm.

 $(H_2PtCl_6 + Re_2O_7)/Al_2O_3$. The reduction of H_2PtCl_6 and Re_2O_7 to the metals seems also to be complete. To support this view, the theoretical and experimental values of $V(H_2)$ consumed during the reduction are in reasonable agreement (see Table 1), especially when the support was γ -Al₂O₃ which is more efficient than α -Al₂O₃ in avoiding the volatilization of the rhenium oxide.

c. Remarks About the Mechanism of Reduction

The temperature of the onset of reduction of Re₂O₇ to metal is determined by the reduction of H₂PtCl₆ itself to the metal which takes place at a temperature nearly independent of the presence of Re₂O₇. Very probably, the reduction of Re₂O₇ to metal starts as soon as some metallic Pt has been formed; hence the reduction of H₂PtCl₆ and Re₂O₇ seems practically simultaneous.

The catalytic effect of supported Pt on the reduction of supported Re₂O₇ may be accounted for by: The activation of H₂ by Pt and then by Pt and Re:

The migration of Re oxide up to the surface of the metal particles via the gaseous phase or by surface migration on the Al_2O_3 carrier. Whatever the detailed mechanism, the transport of rhenium from particle to particle of Al_2O_3 has been proved by the experiments summarized in Table 2.

An additional effect is the migration of active hydrogen which is formed by contact of molecular H₂ with the metal phase onto the surface of the Al2O3 carrier [hydrogen spillover (10.16)]. Recently, the existence of this effect has been strongly supported by the experiments of Gardes et al. (17). These authors have shown that a large amount of active hydrogen may be accumulated on Al₂O₃ if this oxide is heated at about 300°C in the presence of a Ni/Al₂O₃ catalyst in an atmosphere of molecular hydrogen. The active hydrogen accumulated on Al₂O₃ is able to hydrogenate ethylene even at 25°C (17). Such a species could certainly promote the nucleation of metallic Re from Re₂O₇ at a lower temperature than molecular hydrogen. Therefore it is likely that hydrogen spillover takes part in the mechanism of the catalysis by Pt of the reduction of Re₂O₇. Nevertheless, this mechanism has not been definitely proved in the present investigation, although we have shown the occurrence of the migration of Re oxide in the catalyst bed.

In conclusion it has been shown that during the activation by hydrogen of $(H_2PtCl_6 + Re_2O_7)/Al_2O_3$ catalysts, H_2PtCl_6 and Re_2O_7 are both reduced to metal, the reduction of Re_2O_7 being strongly catalyzed by metallic Pt.

ACKNOWLEDGMENTS

The authors acknowledge the assistance of J. Varloud for DTA experiments, W. Desquesnes, H. Urbain and the Laboratoire Central de Microanalyses du C.N.R.S. for chemical analysis, and Y. Trambouze for his interest in this work.

REFERENCES

- Allison, E. G., and Bond, G. C., Catal. Rev. 7, 233 (1973).
- 2. Ollis, D. F., J. Catal. 23, 131 (1971).
- 3. Sinfelt, J. H., J. Catal. 29, 308 (1973).
- McCoy, C. S., and Hunk, P., Chem. Eng. Progr. 67, 78 (1971); Kuchar, P. J., Proc. Div. Refining Amer. Petrol. Inst. 52, 176 (1972).
- Pavlov, A. J., and Levinter, M. E., Neftekhimiya
 12, 845 (1972); Menon, P. G., Sieders, J.,
 Streefkerk, F. J., and Van Keulen, G. J. M., J.
 Catal. 29, 188 (1973); Zubovich, I. A., Russ. J.
 Phys. Chem. 47, 615 (1973); Freel, J., Amer.
 Chem. Soc., Div. Petrol. Chem., Prep. 18, 10 (1973); Johnson, M. F. L., and LeRoy, V. M.,
 J. Catal. 35, 434 (1974).
- Fouque, D., Fouilloux, P., Bussière, P., Weigel, D., and Prettre, M., J. Chim. Phys. 62, 1088 (1965).
- Mills, G. A., Weller, S., and Cornelius, E. B., *Actes Congr. Int. Catal.*, 2nd, 1960 2, 221 (1961).
- Aben, P. C., Van der Eijk, H., and Oelderik, J. M., Proc. Int. Congr. Catal., 5th (J. W. Hightower, Ed.) 1, 717 (1972).

- Smith-Broadbent, H., Campbell, G. C., Bartley,
 W. J., and Johnson, J. H., J. Org. Chem. 24, 1847 (1959).
- Il'Chenko, N. I., Usp. Khim. 41, 84 (1972);
 Charcosset, H., and Delmon, B., Ind. Chim. Belg. 38, 481 (1973); Sermon, P. A., and Bond,
 G. C., Catal. Rev. 8, 211 (1973).
- Tribalat, S., "Rhenium et Technetium," p. 43.
 Gauthier-Villars, Paris, 1957.
- Boudart, M., Vannice, M. A., and Benson, J. E.,
 Phys. Chem. Neue Folge 64, 171 (1969).
- Bond, G. C., Sermon, P. A., and Tripathi, J. B.
 P., Meet. Belgian Chem. Soc. (7-8 Sept.)
 1972; Bond, G. C., and Tripathi, J. B. P., J.
 Less-Common Metals 36, 31 (1974).
- Kubicka, H., Rocz. Chem. Ann. Soc. Chim. Polonorum 47, 599 (1973).
- Ershov, N. I., Zueva, T. V., and Eidus, Y. T., Kinet. Katal. 12, 1192 (1971).
- Boudart, M., in "Advances in Catalysis" (D. D. Eley, H. Pines and P. B. Weisz, Eds.), Vol. 20, p. 153. Academic Press, New York, 1969.
- Gardes, G. E. E., Pajonk, G. M., and Teichner,
 S. J., J. Catal. 33, 145 (1974).